SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY :: PUTTUR
 (AUTONOMOUS)
 Siddharth Nagar, Narayavanam Road, PUTTUR-517 583

 QUESTION BANK

 QUESTION BANK

 Subject with Code: Thermal Fluid Engineering (20ME0353 Course \& Branch: B. Tech - EEE

 Subject with Code: Thermal Fluid Engineering (20ME0353 Course \& Branch: B. Tech - EEE

 Year/ Sem : I-B.Tech \& I-Sem

 Year/ Sem : I-B.Tech \& I-Sem Regulation: R20

 Regulation: R20}

UNIT -I
POWER PLANTS AND BASIC CONCEPTS

1		Draw a neat sketch of a Thermal Power Plant and Explain the each component in the thermal power plant?	L1	CO1	12M
2		Explain briefly about cooling towers and Coal handling with neat diagram	L2	CO1	12M
3		What is need of Chimney in thermal power plant and explain their types?	L1	CO1	12M
4		Write short notes on any five thermal power plants in India?	L2	CO1	12M
5		Explain the various elements of hydroelectric power station with a neat sketch?	L2	CO1	12M
6	(a)	Explain the concept of pumped storage power plants.	L2	CO1	6M
	(b)	Write short notes on any two hydroelectric power plants in India	L2	CO1	6M
7	(a)	Definitions of system, boundary, surrounding and control volume	L1	CO1	6M
	(b)	Explain different types of thermodynamic systems?	L2	CO2	6M
8	(a) (b) (c) (d) (e) (f)	Define the following properties of the system with units? Pressure Internal energy Temperature Density Enthalpy Volume	L1	CO2	12M
9	(a)	Define property? Distinguish between intensive property and extensive property with example?	$\begin{gathered} \text { L1 } \\ \& \\ \text { L2 } \end{gathered}$	CO 2	7M
	(b)	Explain following terms state, path, process and cycle?	L2	CO2	5M
10	(a)	Describe in detail about Quasi Static Process with schematic diagram?	L1	CO2	6M
10	(b)	What is thermodynamic equilibrium? Explain it in detail?	L1	CO2	6M

UNIT-II

PURE SUBSTANCES, BOILERS, BOILER MOUNTINGS AND BOILER ACCESSORIES

1		Draw and explain a P.V, P-T and T-S diagram for a pure substance	L2	CO2	12M
2		Write short notes on Mollier Diagram and Dryness Fraction			12M
3	(a) (b) (c) (d) (e) (f)	Explain the following terms relating to steam formation : Enthalpy of wet steam Entropy of Steam Sensible heat of water Latent heat of steam Dryness fraction of steam Superheated steam	L2	CO2	$\begin{aligned} & 2 \mathrm{M} \\ & 2 \mathrm{M} \end{aligned}$
4		What is a boiler? How is it classified?	L1	CO3	12M
5		Compare water tube boilers and fire tube boilers	L2	CO3	12M
6		Explain Cochran boiler with neat sketch.	L2	CO3	12M
7		Explain Lamont boiler with neat sketch	L2	CO3	12M
		Write short notes on a) Pressure gauge. b) Water level indicator	L2	CO3	12M
8	(a)	What is fusible plug? Draw the sketch and explain	L1	CO2	6M
	(b)	What is Blow down cock? Explain its purpose	L2	CO2	6M
9		Short notes on a) Stop valve. b) safety valve	L1	CO2	$\begin{aligned} & 6 \mathrm{M} \\ & 6 \mathrm{M} \end{aligned}$
10	(a)	Explain the feed pump and economizer.	L2	CO2	6M
	(b)	What is the difference between super heater and air pre heater? Explain in detail with diagrams	L2	CO2	6M

UNIT - III
 FLUID PROPERTIES AND FLUID STATICS

1		Define the following fluid properties: (a) (b) (c) (d) (e) (ensity (f)	Specific Weight Specific volume Specific gravity of a fluid. Viscosity Compressibility	$\mathbf{C O 4}$	12 M
2	(a)	Write a short note on Vapour Pressure, surface tension and capillarity.	$\mathbf{L 2}$	$\mathbf{C O 5}$	6 M
	(b)	Define Atmospheric pressure, gauge pressure and absolute pressures	$\mathbf{L 1}$	$\mathbf{C O 5}$	6 M
3	(a)	Define compressibility and specific weight and write their units.	$\mathbf{L 1}$	$\mathbf{C O 4}$	6 M
		Write a short note on Piezometer with neat sketch?	$\mathbf{L 1}$	$\mathbf{C O 5}$	6 M
4		Explain U-tube manometer and inverted U- tube manometer with schematic diagram?	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M
5		What is manometer and classify it.? Explain U tube manometer with neat diagram	$\mathbf{L 1}$	$\mathbf{C O 5}$	12 M
6		Define pressure? List out instruments used to measure pressure and explain any two of the instruments with a neat sketch.	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M
7	(a)	Derive an expression for surface tension inside the liquid droplet	$\mathbf{L 3}$	$\mathbf{C O 5}$	6 M
	(b)	The surface tension of water in contact with air at 20 ${ }^{\circ} \mathrm{C}$ is 0.0725 N/m. the pressure inside a droplet of water is to be 0.02N/cm greater than the outside pressure. Calculate the diameter of droplet of water.	$\mathbf{L 5}$	$\mathbf{C O 5}$	6 M
8	(a)	Derive an expression for capillary rise and fall in a glass tube	$\mathbf{L 3}$	$\mathbf{C O 4}$	6 M
	(b)	The capillary rise in the glass tube is not to exceed 0.2mm of water. Determine its minimum size, given that surface tension for water in contact with air = 0.0725 N/m	$\mathbf{L 5}$	$\mathbf{C O 5}$	6 M
9		Write the advantages and disadvantages of manometers	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M
10	Explain with neat sketch Bourdon tube pressure gauge	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M	

UNIT - IV

FLUID DYNAMICS AND PIPE FLOW

1		List out types of flows and explain it?	L1	CO4	12 M
2		Derive Continuity equation in one dimensional form Euler's equation of motion and Bernoulli's energy equation?	$\mathbf{L 3}$	$\mathbf{C O 4}$	12 M
3		Formulate an expression for discharge measurement by Venturimeter	$\mathbf{L 6}$	$\mathbf{C O 4}$	12 M
4	Develop an expression for Discharge measurement by orifice meter?	$\mathbf{L 3}$	$\mathbf{C O 5}$	12 M	
5		Discuss the impulse momentum equation? Derive an expression for force exerted by a fluid flow on bend pipe?	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M
6		Explain about Energy gradient line and Hydraulic gradient line?	$\mathbf{L 2}$	$\mathbf{C O 6}$	12 M
7		Derive an expression for the loss of head due to sudden enlargement of a pipe.	$\mathbf{L 3}$	$\mathbf{C O 5}$	12 M
8		Derive an equation for Darcy Weisbach equation?	$\mathbf{L 3}$	$\mathbf{C O 5}$	12 M
9		Enlist the major and minor loses in pipes. Derive the expression for loss of head due to sudden contraction	$\mathbf{L 3}$	$\mathbf{C O 5}$	12 M
10	Write a short note on Pipes in Series and Pipes in Parallel and derive expression for it?	$\mathbf{L 2}$	$\mathbf{C O 5}$	12 M	

UNIT - V

IMPACT OF JETS AND HYDRAULIC TURBINES

1	(a)	Define the terms a) Fluid jet b) Impact of jets	L1	CO5	6M
	(b)	Derive an expression for the force exerted by a jet of water on an inclined fixed plate in the direction of the jet.	L3	CO5	6M
2	(a)	Find the force exerted by a jet of water of diameter 75 mm on a stationary flat plate, when the jet strikes the plate normally with velocity of $20 \mathrm{~m} / \mathrm{s}$.	L5	CO5	6M
	(b)	Derive an expression for the hydraulic efficiency when a liquid jet strikes a single fixed curved vane	L3	CO5	6M
3	(a)	A jet of water of diameter 7.5 cm moving with a velocity of 25 m / s, strikes a fixed plate in such a way that the angle between the jet and plate is 60° Find the force extracted by Jet a) in the direction normal to the plate. b) in the direction of jet.	L5	CO5	6M
	(b)	A jet of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet $5 \mathrm{~m} / \mathrm{s}$. Find the force on the plate, work done and efficiency of jet.	L5	CO5	6M
4	(a)	Derive an expression for the force exerted by a jet on fixed vertical flat plate.	L3	CO5	6M
	(b)	A jet of water 50 mm strikes a flat stationary plate normally with a velocity of $30 \mathrm{~m} / \mathrm{s}$. Find the force experienced by the plate.	L5	CO6	6M
5		A jet of water of diameter 50 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ impinges on a fixed curved plate tangentially at one end at an angle of 30° to the horizontal. Calculate the resultant force of the jet on the plate if the jet is reflected through an angle of 50°. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$	L5	CO6	12M
6		Explain the working of a Pelton wheel with a neat sketch .	L2	CO6	12M
7		Draw the neat sketch of Modern Francis turbine and explain its working?	L1	CO6	12M
8		State the differences between Pelton wheel and Francis turbine	L1	CO6	12M

9		Draw the neat sketch of Kaplan turbine and explain its working.	L1	CO6	12 M
10		State the differences between Kaplan turbine and Francis turbine	L1	CO6	12 M

PREPARED BY: Mr. J.MANI \& Mr. M.SUDHEER

